Характер оксида магния


Кислотно основной характер оксида магния

Оксид магния MgO — типичный основный оксид; белое мелкокристаллическое вещество, нерастворимое в воде; приготовленное особым образом может взаимодействовать с горячей водой (для MgO нехарактерно). Плавится при 2800 °С. В технике и строительной химии этот оксид называют жженой магнезией. Взаимодействует с кислотами, кислотными и амфотерными оксидами, карбидом кальция, углеродом (при высокой температуре). Напишите уравнения реакций взаимодействия оксида магния с серной кислотой, диоксидом кремния, оксидом алюминия. Оксид магния реагирует с водными растворами солей магния:

Это свойство используется при твердении магнезиальных вяжущих.

Жженую магнезию получают разложением магнезита:

Оксид магния применяют для получения магния, как магнезиальное вяжущее (магнезитовый цемент) и при изготовлении магнезитовых огнеупоров.

Гидроксид магния Mg(OH)2 — белое твердое, нерастворимое в воде вещество, электролит средней силы. Проявляет основные свойства. Реагирует с кислотами; состав продуктов реакции зависит от соотношения компонентов:

Если смешать при интенсивном перемешивании 1 моль основания и 1 моль кислоты, то получается основная соль и вода:

Водная суспензия гидроксида магния реагирует с углекислым газом, при этом в первой стадии образуется карбонат магния, а во второй — гидрокарбонат:

Эта реакция (II стадия) характеризует химическое выветривание магнезита и доломита и является источником временной магниевой жесткости. Гидроксид магния разлагается при нагревании.

Напишите уравнения реакций: а) взаимодействия доломита с водным раствором углекислого газа; б) разложения гидроксида магния.

Гидроксид магния получают при взаимодействии водных растворов солей магния и щелочей либо гидроксида аммония.

Напишите уравнения реакций взаимодействия сульфата магния с гидроксидом натрия и гидроксидом аммония, взятых в избытке.

источник

Хим. свойства. Соединения металла (указать формулы и характер оксидов и гидроксидов магния,

написать уравнения реакций, подтверждающих характер данного гидроксида)

2Mg0 + C+4O2 2Mg+2O+C0,Прекратить к горящему магнию доступ кислорода можно засыпав его песком, хотя и с оксидом кремния (IV) магний взаимодействует, но со значительно меньшим выделением теплоты:

этим и определяется возможность использования песка для тушения кремния. Опасность возгорания магния при интенсивном нагреве одна из причин, по которым его использование как технического материала ограничена.

В электрохимическом ряду напряжений магний стоит значительно левее водорода и активно реагирует с разбавленными кислотами с образованием солей. В этих реакциях есть у магния особенности. Он не растворяется во фтороводородной, концентрированной серной и в смеси серной и в смеси азотной кислот, растворяющей другие металлы почти столь же эффективно, как «царская водка» (смесь HCl и HNO3). Устойчивость магния к растворению во фтороводородной кислоте объясняется просто: поверхность магния покрывается нерастворимой во фтороводородной кислоте пленкой фторида магния MgF2. Устойчивость магния к достаточно концентрированной серной кислоте и смеси ее с азотной кислотой объяснить сложнее, хотя и в этом случае причина кроется в пассивации поверхности магния. С растворами щелочей и гидроксида аммония магний практически не взаимодействует. А вот с растворами аммонийных солей реакция хотя и медленно, но происходит:

Причина воспламенения — очень большое тепловыделение, как и в случае реакции магния с кислородом. Так при образовании 1 моль хлорида магния из магния и хлора выделяется 642 КДж. При нагревании магний соединяется с серой (MgS), и с азотом (Mg3N2). При повышенном давлении и нагревании с водородом магний образует гидрид магния-2e Mg0 + h30 Mg+2h3-.

Большое сродство магния к хлору позволило создать новое металлургическое производство — «магниетермию» — получение металлов в результате реакции

этим методом получают металлы, играющие очень важную роль в современной технике — цирконий, хром, торий, бериллий. Легкий и прочный «металл космической эры» — титан практически весь получают таким способом.

Сущность производства сводится к следующему: при получении металлического магния электролизом расплава хлорида магния в качестве побочного продукта образуется хлор. Этот хлор используют для получения хлорида титана (IV) TiCl4, который магнием восстанавливается до металлическоготитана-

источник

Магний оксид нередко называют еще жженой магнезией или просто окисью магния. Это вещество представляет легкий и мелкий кристаллический белый порошок. В природе магний оксид встречается в виде минерала периклаза. В пищевой промышленности это вещество известно как пищевая добавка под кодом E530.

Химическая формула данного вещества: MgO. Это соединение практически не имеет запаха, в аммиаке и кислоте растворяется хорошо, в воде его растворимость при 30 °С составляет всего лишь 0,0086 грамм/100 мл, а в спирте оно и вовсе не растворяется. Молярная масса MgO — 40,3044 г/моль. При 20 °C его плотность равна 3,58 г/см³, температура кипения — 3600 °C, плавления — 2852 °C. Мелкокристаллический магний оксид химически довольно активен. Он способен поглощать углекислый газ с образованием соответствующего карбоната:

хоть и медленно, но все же реагирует с водой, образуя при этом нерастворимое слабое основание:

вступает в реакцию с кислотами:

Прокаленный магний оксид свою химическую активность теряет. Также следует добавить, что этот порошок гигроскопечен.

В промышленности данное соединение в основном получают посредством обжига. В качестве сырья используют такие минералы как доломит (MgCO3.CaCO3) или магнезит (MgCO3). Кроме того, жженую магнезию производят при помощи прокаливания бишофита (MgCl2 х 6h3O) в водяном паре, прокаливания Mg(OH)2 и прочих неустойчивых к температуре соединений Mg. В лабораторных условиях MgO можно получить при взаимодействии ее составных компонентов:

либо посредством термического разложения некоторых солей или гидроксида:

В зависимости от способа получения окиси магния принято выделять два основных вида этого соединения: легкая и тяжелая магнезия. Первый представляет собой бесцветный порошок, который достаточно легко вступает в различные реакции с разбавленными кислотами, в результате чего образуются соли Mg. Второй состоит из больших кристаллов природного или искусственного периклаза и отличается водостойкостью и более инертен.

В промышленности это соединение используют для изготовления цементов, огнеупоров, в качестве наполнителя при производстве резины и для очистки нефтепродуктов. Сверхлегкий магний оксид применяют в качестве очень мелкого абразива, которым очищают поверхность. В частности, это используется в электронной промышленности. Кроме того, жженая магнезия широко применяется в медицине. Здесь MgO используют при нарушении уровня кислотности желудочного сока, возникающего из-за избытка соляной кислоты. Окись магния также принимают для нейтрализации активных веществ, случайно попавших в желудок. В пищевой промышленности MgO применяется в качестве пищевой добавки (код E530), которая препятствует комкованию и слеживанию. Жженая магнезия используется также и в спортивной гимнастике. Здесь этот порошок спортсмены наносят на руки для того чтобы контакт с гимнастическим снарядом был более надежным. Добавим еще, что оксид магния является абсолютным отражателем. Коэффициент отражения данного вещества в расширенной спектральной полосе равен единице и поэтому его вполне можно использовать в качестве эталона белого цвета.

источник

Гидроксид магния (формула Mg(OH)2) — это химическое неорганическое соединение, гидроксид магния (щелочноземельного металла). Относится к группе нерастворимых оснований.

Физические свойства магния гидроксида

1. В нормальных условиях магния гидроксид представляет собой бесцветные (прозрачные) кристаллы, имеющие гексагональную решетку. 2. Разлагается на оксид магния (MgO) и воду (h3O) при температуре триста пятьдесят градусов.3. Поглощает из воздуха углекислый газ (CO2) и воду (h3O), образуя при этом основной карбонат магния. 4. Практически не растворяется в воде и хорошо растворим в солях аммония.5. Это основание средней силы.

6. В природе встречается в виде особого минерала — брусита.

Как получают магния гидроксид?

1. Данное вещество можно получить посредством взаимодействия солей магния с различными щелочами, например:

MgCl2 (хлорид магния) + 2NaOH (гидроксид натрия) = Mg(OH)2 (выпадает в осадок, гидроксид магния) + 2NaCl (хлорид натрия)

Mg(NO3)2 (нитрат магния) + 2KOH (основание калия) = Mg(OH)2 (основание магния, выпадает в осадок) + 2KNO3 (нитрат калия)

2. Также это химическое соединение можно получить путем реакции раствора магния хлорида (MgCl2) с обожженным доломитом (CaO*MgO):

MgCl2 (хлорид магния) + CaO*MgO (обожженный доломит) + 2h3O (вода) = 2Mg(OH)2 (основание магния, выпадает в осадок) + CaCl2 (хлорид кальция)

3. Основание магния можно получить еще и путем взаимодействия паров воды с металлическим магнием:

Mg (магний металлический) + 2h3O (водяные пары) = Mg(OH)2 (выпадает в осадок) + h3 (водород, в виде газа)

Химические свойства магния гидроксида:

1. Это вещество при температуре 350 градусов разлагается на оксид магния и воду. Так выглядит эта реакция:

Mg(OH)2 (основание магния) = MgO (магния оксид) + 2h3O (вода)

2. Взаимодействует с кислотами. При этом образуются соль и вода. Примеры:

Mg(OH)2 (основание) + 2HCl (соляная кислота) = MgCl2 (магниевый хлорид) + 2h3O (вода)

Mg(OH)2 (основание) + h3SO4 (серная кислота) = MgSO4 (магниевый сульфат) + 2h3O (вода)

3. Взаимодействует с кислотными оксидами. В результате реакции получаются соль и вода:

Mg(OH)2 (основание) + SO3 (оксид серы) = MgSO4 (магниевый сульфат) + h3O (вода)

4. Также магниевый гидроксид взаимодействует с концентрированными горячими растворами щелочей. При этом образуются гидроксомагнезаты. Примеры:

Mg(OH)2 + 2NaOH (основание натрия) = Na2(Mg(OH)4)

Mg(OH)2 + S(OH)2 (основание серы) = Sr(Mg(OH)4)

— как пищевая добавка, предназначенная для связывания диоксида серы (SO2). Зарегестрирован под знаком Е528;— в качестве фокулянта для очистки сточных вод;— как добавка в различные моющие средства и как компонент в зубных пастах;

— для рафинирования сахара и для получения оксида магния (MgO);

Отдельного внимания заслуживает использование данного химического вещества в медицинской отрасли.

Гидроксид магния в медицине

Это слабительное и антацидное средство, способное нейтрализовать соляную (хлороводородную, HCl) кислоту в желудке и снижать активность желудочного сока. При этом воздействие гидроксида магния не сопровождается изменениями КЩР и вторичной гиперсекрецией соляной кислоты. Также данное вещество способствует повышению перистальтики и других отделов кишечника. Слабительное действие наступает примерно через 2-6 часов.

Показания к применению: гастрит хронический с повышенной и нормальной секрецией, язва двенадцатиперстной кишки и желудка, чувство дискомфорта или боли в эпигастрии, изжога после курения или употребления кофе или алкоголя, запоры.

Противопоказания к применению: повышенная чувствительность в гидроксиду магния.

Стоит отметить, что у пациентов, имеющих проблемы с почками, после применения магниевого основания может развиться гипермагнемия (то есть избыток магния в организме).

Также в медицине используется алгелдрат магния гидроксид — средство, которое применяется при язве желудка, остром дуодените, гиперацидном гастрите, гастралгии, хроническом панкреатите, изжоге, гиперфосфатемии, гнилостной или бродильной дипепсии. Этот препарат будет противопоказан пациентам с гиперчувствительностью, болезнью Альцгеймера, в период беременности или грудного вскармливания.

источник

Поговорим о том, как определить характер оксида. Начнем с того, что все вещества принято подразделять на две группы: простые и сложные. Простые вещества подразделяют на металлы и неметаллы. Сложные соединения делят на четыре класса: основания, оксиды, соли, кислоты.

Так как характер оксидов зависит от их состава, для начала дадим определение данному классу неорганических веществ. Оксиды представляют собой сложные вещества, которые состоят из двух элементов. Особенность их в том, что кислород всегда располагается в формуле вторым (последним) элементом.

Самым распространенным вариантом считают взаимодействие с кислородом простых веществ (металлов, неметаллов). Например, при взаимодействии магния с кислородом образуется оксид магния, проявляющий основные свойства.

Характер оксидов зависит от их состава. Существуют определенные правила, по которым называют такие вещества.

Если оксид образован металлами главных подгрупп, валентность не указывается. Например, оксид кальция СаО. Если же в соединении первым располагается металл подобной подгруппы, который обладает переменной валентностью, то она обязательно указывается римской цифрой. Ставится после названия соединения в круглых скобках. Например, существуют оксиды железа (2) и (3). Составляя формулы оксидов, нужно помнить о том, что сумма степеней окисления в нем должна быть равна нулю.

Читайте также:  Цедекс суспензия инструкция по применению

Рассмотрим, как характер оксидов зависит от степени окисления. Металлы, имеющие степень окисления +1 и +2, образуют с кислородом основные оксиды. Специфичной особенностью таких соединений является основный характер оксидов. Такие соединения вступают в химическое взаимодействие с солеобразующими оксидами неметаллов, образуя с ними соли. Кроме того, основные оксиды реагируют с кислотами. Продукт взаимодействия зависит от того, в каком количестве были взяты исходные вещества.

Неметаллы, а также металлы со степенями окисления от +4 до +7, образуют с кислородом кислотные оксиды. Характер оксидов предполагает взаимодействие с основаниями (щелочами). Результат взаимодействия зависит от того, в каком количестве была взята исходная щелочь. При ее недостатке в качестве продукта взаимодействия образуется кислая соль. Например, в реакции оксида углерода (4) с гидроксидом натрия образуется гидрокарбонат натрия (кислая соль).

В случае взаимодействия кислотного оксида с избыточным количеством щелочи продуктом реакции будет средняя соль (карбонат натрия). Характер кислотных оксидов зависит от степени окисления.

Они подразделяются на солеобразующие оксиды (в которых степень окисления элемента равна номеру группы), а также на безразличные оксиды, не способные образовывать соли.

Есть и амфотерный характер свойств оксидов. Суть его заключается во взаимодействии этих соединений и с кислотами, и со щелочами. Какие оксиды проявляют двойственные (амфотерные) свойства? К ним относят бинарные соединения металлов со степенью окисления +3, а также оксиды бериллия, цинка.

Существуют различные способы получения оксидов. Самым распространенным вариантом считают взаимодействие с кислородом простым веществ (металлов, неметаллов). Например, при взаимодействии магния с кислородом образуется оксид магния, проявляющий основные свойства.

Кроме того, получить оксиды можно и при взаимодействии сложных веществ с молекулярных кислородом. Например, при горении пирита (сульфида железа 2) можно получить сразу два оксида: серы и железа.

Еще одним вариантом получения оксидов считается реакция разложения солей кислородсодержащих кислот. Например, при разложении карбоната кальция можно получить углекислый газ и оксид кальция (негашеную известь).

Основные и амфотерные оксиды образуются и при разложении нерастворимых оснований. Например, при прокаливании гидроксида железа (3) образуется оксид железа (3), а также водяной пар.

Оксиды являются классом неорганических веществ, имеющем широкое промышленное применение. Они используются в строительной сфере, фармацевтической промышленности, медицине.

Кроме того, амфотерные оксиды часто используют в органическом синтезе в качестве катализаторов (ускорителей химических процессов).

источник

научная статья по теме КИСЛОТНО-ОСНОВНЫЕ, АДСОРБЦИОННЫЕ И ФОТОСОРБЦИОННЫЕ СВОЙСТВА ОБРАЗЦОВ ОКСИДА МАГНИЯ Химия

Авторы работы:

Научный журнал:

Текст научной статьи на тему «КИСЛОТНО-ОСНОВНЫЕ, АДСОРБЦИОННЫЕ И ФОТОСОРБЦИОННЫЕ СВОЙСТВА ОБРАЗЦОВ ОКСИДА МАГНИЯ»

ЗАЩИТА МЕТАЛЛОВ, 2008, том 44, № 3, с. 330-334

МЕТОДЫ ИЗУЧЕНИЯ = ФИЗИКО-ХИМИЧЕСКИХ СИСТЕМ =

КИСЛОТНО-ОСНОВНЫЕ, АДСОРБЦИОННЫЕ И ФОТОСОРБЦИОННЫЕ СВОЙСТВА ОБРАЗЦОВ ОКСИДА МАГНИЯ

© 2008 г. И. А. Екимова, Т. С. Минакова

Томский государственный университет 634050, Россия, г. Томск, пр. Ленина, 36 E-mail: [email protected] Поступила в редакцию 14.06.2007 г.

Исследованы кислотно-основные, адсорбционные и фотосорбционные свойства образцов оксида магния разного способа синтеза. Установлено, что чем менее основная поверхность оксида, тем она обладает большей фотосорбционной способностью по отношению к кислороду и большей адсорбционной способностью по отношению к парам воды.

Оксид магния находит самое широкое применение в различных отраслях промышленности, сельском хозяйстве и медицине как огнеупорный материал, адсорбент, удобрение и в качестве составляющих лекарственных препаратов. Одна из особенностей оксида магния состоит в том, что он является дегидратирующим катализатором, так как способен ускорять процессы дегидратации и конденсации. Это вещество имеет высокую удельную поверхность и механическую прочность, высокую степень основности, ионную кристаллическую решетку, отсюда его необычайные адсорбционные свойства относительно многих веществ. Поэтому изучение оксида магния, а именно его поверхностных свойств является актуальным и требует применения современных методов исследования. К настоящему времени установлена взаимосвязь кислотности поверхности с отдельными характеристиками; такими как электроотрицательность, радиус и эффективный заряд атомов, тип решетки, энергия связи Э-О, координирующая способность металлов и степень окисления. Часто эти корреляции получены для конкретного круга объектов. В данной работе изучены кислотно-основные, адсорбционные и фотосорбционные свойства оксида магния и их изменение в зависимости от способа получения. Выбор объектов исследования не случаен. Как уже говорилось ранее, в последние годы в связи с развитием новых отраслей техники возросла роль оксида магния. В частности, его применяют для изготовления лабораторных изделий, огнеупорного кирпича, футеровки печей, магнезиального цемента.

Для исследования были взяты следующие образцы оксида магния: (1) — промышленного способа получения из MgCОз, (2) — промышленного способа получения из MgSО4, (3) — лабораторного способа получения из (MgОH)2CО3 с м. о. MgCО3/Mg(ОH)2 = = 3.89, (4) — лабораторного способа получения из ^ОН)2СО3 с м. о. MgCО3/Mg(ОH)2 = 1.74.

Удельную поверхность образцов определяли методом БЭТ по низкотемпературной десорбции аргона на газохроматографической установке. Описание методики приведено в [1]. Относительная погрешность определения составляла 15%. Удельные поверхности для оксидов магния равны соответственно 58, 52, 155, 137 м2/г.

Идентификация образцов проводилась рентге-нофазовым анализом на дифрактометре ХКЪ-6000 на СиКа-излучении.

Результаты по фотосорбции простых газов (кислорода и водорода) получены традиционным для исследований такого рода фотоманометрическим методом. Фотосорбционные исследования были проведены в НИИ физики им. В.А. Фока Санкт-Петербургского государственного университета. Для измерения давления использовался манометр типа Пирани с рабочим диапазоном 10-4-30 Па. Для проведения опытов порошкообразные образцы помещались в кварцевую кювету (обычно плоскую), или наносились из водных суспензий слои адсорбента на внутреннюю часть вакуумной кюветы. Для очистки и обезгаживания образцов использовались вакуумные установки, аналогичные описанным в работе [2], позволяющие получать и длительное время сохранять в реакторе вакуум не хуже 10-5-10-6 Па и в значительной мере

предотвращающие возможность загрязнения адсорбентов парами органических соединений.

Все оксидные адсорбенты перед началом измерений очищались от ранее адсорбированных органических загрязнений многочасовой прокалкой в атмосфере кислорода при температурах 673-723 К с последующим прогревом в вакууме. Для освещения адсорбентов использовалась лампа ДРТ-230. Кислород, необходимый для проведения опытов, получался непосредственно в установке разложением вакуумтренированного при температуре начала разложения перманганата калия с последующей дополнительной очисткой газа с помощью ловушки, охлаждаемой жидким азотом. Водород получали разложением гидрида титана. Преимущество такого источника в том, что неиспользованный водород полностью поглощается им после прекращения нагрева. ТД-измерения проводились в интервале температур от 293 К до 660 К. Для нагрева использовалась специально изготовленная печь с малыми тепловыми потерями. Температура образца повышалась по линейному закону: Т = Т0 + вг, где г — время (сек), Т0 = 293 К, в — 0.3 К/с.

Адсорбционные измерения проводили весовым методом на вакуумной установке, описанной в [3]. Для измерения давления использовали и — образный манометр и манометр Мак — Леода. Растяжение спирали весов Мак — Бена — Бакра фиксировали с помощью катетометра В-630. Чувствительность спирали составляла 2.2 х 10-3 г/мм. В качестве ад-сорбата использовали бидистиллированную воду. Очистку воды производили путем многократных циклов «замораживание — откачка — размораживание». Погрешность адсорбционных измерений составляла не более 10% от измеряемой величины. Образцы вакуумировались в течение 24 часов при комнатной температуре и в течение 4 часов при 573 К. Эксперименты проводились при комнатной температуре.

При изучении кислотно-основных свойств использовались методы рН — метрии и адсорбции индикаторов Гаммета, а также метод потенциомет-рического титрования. При исследовании общей кислотности поверхности была использована следующая методика рН — метрического изучения порошков MgO: в потенциометрическую ячейку вводили 10 мл бидистиллированной воды и после стабилизации потенциала стеклянного электрода одновременно с включением секундомера высыпали навеску (0.2 г) образца. Суспензия непрерывно перемешивалась с помощью магнитной мешалки. В индикаторном методе в качестве кислотно-основных индикаторов использовали слабые органические кислоты и основания, окраска молекулярных и ионных форм которых различается. Методика исследования поверхностной кислотности индикаторным методом подробно описана в [4]. Адсорбция

индикаторов проводилась не только в водной среде, но и в диметилформамиде (ДМФА).

Потенциометрическое титрование суспензий проведено с помощью иономера ЭСЛ-43-07 со стеклянным и хлоридсеребряным проточным электродами, титрант подавался автоматически. Навеска оксида магния 0.2 г суспендирована в 1 мл 0.1 н. раствора HCl с добавлением 19 мл KCl 0,1н. и оттитрована 0.1 н. раствором KOH. Также навеску оксида магния 0.2 г суспендировали в 1 мл 0.1 н. раствора KOH с добавлением 19 мл KCl 0.1 н. и оттитровы-вали 0.1 н. раствором HCl. Подобным образом проводилось титрование растворов без добавок оксида магния. Перемешивание осуществлялось стеклянной мешалкой со скоростью 100-150 оборотов в минуту. Величина pH изоионного состояния (рНииС) определялась по пересечению кривых титрования испытуемой суспензии и холостого раствора.

В таблице сведены значения кислотно-основных параметров и величин, характеризующих фото-сорбционную и адсорбционную способности оксидов магния. Как видно из таблицы величины рНиис, определенные из кинетических кривых, увеличиваются в ряду оксидов (1), (2), (4), (3). В том же направлении возрастают рНииС, определенные из потен-циометрического титрования, и рассчитанная из индикаторного метода функция Гаммета. И так, основность поверхности образцов увеличивается в ряду оксидов (1), (2), (4), (3). Промышленные партии образцов имеют менее основный характер поверхности по сравнению с образцами оксида магния, полученными лабораторным способом.

На оксиде магния обнаружена фотосорбция кислорода, водорода, метана и других газов, а также фото диссоциация закиси азота [2]. Все указанные фотопроцессы имеют место в области длин волн короче 260 нм.

Оксид магния относится к диэлектрикам. Ширина запрещенной зоны кристалла составляет по разным данным 7.4-15.0 эВ. В то же время красная граница спектра действия оксида как фотокатализатора приходится на область длин волн около 310 нм (4.0 эВ). Это значит, что за поглощение света, приводящее к фотореакциям, ответственны переходы в некоторых активных центрах кристалла или в адсорбированных молекулах, а не междузонные переходы. Существуют, однако, веские аргументы в пользу того, что свет поглощается именно твердым телом, а не адсорбированными молекулами. Оксид магния имеет собственное поглощение в области вакуумного ультрафиолета, обладает высокой химической и термической устойчивостью, не меняет стехиометрического состава и кристаллической структуры. Он обладает низкой темновой адсорбцией и каталитической активностью. Все это делает

Значения кислотно-основных параметров и величин, характеризующих фотосорбционную и адсорбционную способности оксидов магния рНиис — рН изоионного состояния; Н0 — функция Гамета, т — время жизни активных центров; Утах — максимальная скорость фотосорбции; АР0 — фотосорбционные емкости; ам — величина емкости монослоя; С — константа уравнения БЭТ; К — константа, характеризующая энергию взаимодействия молекул адсорбата с поверхностью пористого тела (вычислена из изотерм в относительных координатах); — площадка молекулы воды; Буд — удельная поверхность, определенная методом БЭТ по адсорбции паров воды; Тк — 298 К; Т — 573 К

Оксид MgО (1) ^СОэ) MgО (2) ^О4) MgО (3) (^ОН)2СО3 с м. о. MgСОз/Mg(ОН)2 = 3.89) MgО (4) (^ОН)2СО3 с м. о. MgСО3/Mg(ОН)2 = 1.74)

Читайте также:  Мазь глазная гидрокортизон при беременности

рНиис(равн.) 10.2 10.5 10.9 10.8

рНиис НС1 10.3 10.5 10.8 10.7

т, сек (О2) 0.72 х 10-3 1.65 х 10-3 0.76 х 10-3 1.33 х 10-3

т, сек (Н2) 0.42 х 10-3 0.25 х 10-3 0.58 х 10-3 0.25 х 10-3

Утах, Па/сек (Р = 1Па О2) 0.124 0.074 0.034 —

Утах, Па/сек (Р = 1Па Н2) 0.004 0.006 0.002 —

Для дальнейшего прочтения статьи необходимо приобрести полный текст. Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут. Стоимость одной статьи — 150 рублей.

ДАЙБОВА Е.Б., ЗАХАРЕНКО В.С., МИНАКОВА Т.С., САВЕЛЬЕВА Л.А. — 2008 г.

МАТВЕЕВА Т.Н., МИНАКОВА Т.С., СЛИЖОВ Ю.Г. — 2012 г.

ГЛАЗНЕВА Т.С., КОЦАРЕНКО Н.С., ПАУКШТИС Е.А. — 2008 г.

БЕЛЬЧИНСКАЯ Л.И., БОНДАРЕНКО А.В., ГУБКИНА М.Л., КОЗЛОВ К.А., ПЕТУХОВА Г.А., ЧИТЕЧАН С.С. — 2008 г.

источник

К важнейшим классам неорганических веществ по традиции относят простые вещества (металлы и неметаллы), оксиды (кислотные, основные и амфотерные), гидроксиды (часть кислот, основания, амфотерные гидроксиды) и соли. Вещества, относящиеся к одному и тому же классу, обладают сходными химическими свойствами. Но вы уже знаете, что при выделении этих классов используют разные классификационные признаки. В этом параграфе мы окончательно сформулируем определения всех важнейших классов химических веществ и разберемся, по каким признакам выделяются эти классы.

Начнем с простых веществ (классификация по числу элементов, входящих в состав вещества). Их обычно делят на металлы и неметаллы (рис. 13.1-а).

Определение понятия » металл» вы уже знаете.

Из этого определения видно, что главным признаком, позволяющим нам разделить простые вещества на металлы и неметаллы, является тип химической связи.

В большинстве неметаллов связь ковалентная. Но есть еще и благородные газы (простые вещества элементов VIIIA группы), атомы которых в твердом и жидком состоянии связаны только межмолекулярными связями. Отсюда и определение.

Неметаллы – простые вещества, в которых атомы связаны между собой ковалентными (или межмолекулярными) связями.

По химическим свойствам среди металлов выделяют группу так называемых амфотерных металлов. Это название отражает способность этих металлов реагировать как с кислотами, так и со щелочами (как амфотерные оксиды или гидроксиды) (рис. 13.1-б). Кроме этого, из-за химической инертности среди металлов выделяют благородные металлы. К ним относят золото, рутений, родий, палладий, осмий, иридий, платину. По традиции к благородным металлам относят и несколько более реакционно-способное серебро, но не относят такие инертные металлы, как тантал, ниобий и некоторые другие. Есть и другие классификации металлов, например, в металлургии все металлы делят на черные и цветные, относя к черным металлам железо и его сплавы. Из сложных веществ наибольшее значение имеют, прежде всего, оксиды (см.§2.5), но так как в их классификации учитываются кислотно-основные свойства этих соединений, мы сначала вспомним, что такое кислоты и основания.

Кислоты – сложные вещества, содержащие в своем составе ионы оксония или при взаимодействии с водой образующие в качестве катионов только эти ионы. Основания – сложные вещества, содержащие в своем составе гидроксид-ионы или при взаимодействии с водой образующие в качестве анионов только эти ионы.

Таким образом, мы выделяем кислоты и основания из общей массы соединений, используя два признака: состав и химические свойства. По составу кислоты делятся на кислородсодержащие (оксокислоты) и бескислородные (рис. 13.2).

Кислородсодержащие кислоты (оксокислоты) – кислоты, в состав которых входят атомы кислорода. Бескислородные кислоты – кислоты, молекулы которых не содержат кислорода.

Следует помнить, что кислородсодержащие кислоты по своему строению являются гидроксидами.

Примечание. По традиции для бескислородных кислот слово кислота» используется в тех случаях, когда речь идет о растворе соответствующего индивидуального вещества, например: вещество HCl называют хлороводородом, а его водный раствор – хлороводородной или соляной кислотой.

Теперь вернемся к оксидам. Мы относили оксиды к группе кислотных или основных по тому, как они реагируют с водой (или по тому, из кислот или из оснований они получаются). Но с водой реагируют далеко не все оксиды, зато большинство из них реагирует с кислотами или щелочами, поэтому оксиды лучше классифицировать по этому свойству.

Основные оксиды – оксиды, способные реагировать с кислотами и не способные реагировать со щелочами. Кислотные оксиды – оксиды, способные реагировать со щелочами и не способные реагировать с кислотами. Амфотерные оксиды – оксиды, способные реагировать и с кислотами, и со щелочами.

Существует несколько оксидов, которые в обычных условиях не реагируют ни с кислотами, ни со щелочами. Такие оксиды называют несолеобразующими. Это, например, CO, SiO, N2O, NO, MnO2. В отличие от них, остальные оксиды называют солеобразующими (рис. 13.3).

Как вы знаете, большинство кислот и оснований относится к гидроксидам. По способности гидроксидов реагировать и с кислотами, и со щелочами среди них (как и среди оксидов) выделяют амфотерные гидроксиды (рис. 13.4).

Теперь нам осталось дать определение солей. Термин » соль» используется издавна. По мере развития науки, его смысл неоднократно изменялся, расширялся и уточнялся. В современном понимании соль – это ионное соединение, но традиционно к солям не относят ионные оксиды (так как их называют основными оксидами), ионные гидроксиды (основания), а также ионные гидриды, карбиды, нитриды и т. п. Поэтому упрощенно можно сказать, что

Соли – ионные соединения, но не гидриды, не оксиды и не гидроксиды.

Можно дать и другое, более точное, определение солей.

Соли – ионные соединения, в состав которых в качестве анионов входят кислотные остатки.

ckmosstroy.ru

Оксид магния, свойства, получение, химические реакции

Оксид магния – неорганическое вещество, имеет химическую формулу MgO.

Краткая характеристика оксида магния

Физические свойства оксида магния

Получение оксида магния

Химические свойства оксида магния

Химические реакции оксида магния

Применение и использование оксида магния

Краткая характеристика оксида магния:

Оксид магния – неорганическое вещество белого цвета.

Так как валентность магния равна двум, то оксид магния содержит один атом кислорода и один атом магния.

Химическая формула оксида магния MgO.

Плохо растворяется в воде, вступает с ней в реакцию.

Легкий, рыхлый порошок, легко впитывает воду.

Физические свойства оксида магния:

Наименование параметра: Значение:
Химическая формула MgO
Синонимы и названия иностранном языке magnesium oxide (англ.)

магнезия жженая (рус.)

магния окись (устар. рус.)

Тип вещества неорганическое
Внешний вид белый порошок
Цвет белый
Вкус —*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 3580
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 3,58
Температура кипения, °C 3600
Температура плавления, °C 2825
Молярная масса, г/моль 40,3044

* Примечание:

— нет данных.

Оксид магния получают обжигом минералов магнезита и доломита.

Он получается в результате химической реакции – термического разложения карбоната кальция и карбоната магния:

CaMg(CO3)2 → CaО + MgО + СО2 (t = 900-1200 oC);

CaCO3·MgCO3 → CaО + MgО + СО2 (t = 900-1200 oC);

MgCO3 → MgО + СО2 (t > 650 oC);

CaCO3 → CaО + СО2 (t = 900-1200 oC).

CaMg(CO3)2, CaCO3·MgCO3 – химическая формула доломита.

MgCO3 – химическая формула магнезита.

Это промышленный способ получения оксида магния.

Оксид магния относится к основным оксидам.

Химические свойства оксида магния аналогичны свойствам основных оксидов других металлов. Поэтому для него характерны следующие химические реакции:

1. реакция оксида магния с водородом:

MgО + h3 → Mg + h3О.

В результате реакции образуется магний и вода.

2. реакция оксида магния с углеродом:

MgО + С → Mg + СО (t  = 2000 oC).

В результате реакции образуется магний и оксид углерода.

3. реакция оксида магния с серой:

2MgО + 3S → 2MgS + SО2.

В результате реакции образуется сульфид магния и оксид серы.

4. реакция оксида магния с азотом:

2MgО + N2 → 2Mg + 2NО.

В результате реакции образуется магний и оксид азота.

5. реакция оксида магния с кремнием:

2MgО + Si → 2Mg + SiО2.

В результате реакции образуется магний и оксид кремния.

6. реакция оксида магния с калием:

MgО + 2K → Mg + K2О.

В результате реакции образуется магний и оксид калия.

7. реакция оксида магния с кальцием:

MgО + Са → Mg + СаО (t  = 1300 oC).

В результате реакции образуется магний и оксид кальция.

8. реакция оксида магния с алюминием:

3MgО + 2Al → 3Mg + Al2О3.

В результате реакции образуется магний и оксид алюминия.

9. реакция оксида магния с хлором и углеродом:

MgO + Cl2 + С → MgCl2 + СО (t  = 800-1000 oC).

В результате реакции образуется хлорид магния и оксид углерода.

10. реакция оксида магния с водой:

MgО + Н2О → Mg(ОН)2 (t  = 100-125 oC).

Оксид магния реагирует с водой, образуя гидроксид магния.

11. реакция оксида магния с оксидом углерода (углекислым газом):

MgО + СО2 → MgСО3.

Оксид магния реагирует с углекислым газом (являющийся кислотным оксидом), образуя соль – карбонат магния.

12. реакция оксида магния с оксидом серы: 

MgО + SО2 → MgSО3;

MgО + SО3 → MgSО4. 

Оксид серы также является кислотным оксидом. В результате реакции образуется соответственно соль – в первом случае – сульфит магния, во втором случае – сульфат магния.

13. реакция оксида магния с оксидом кремния:

MgО + SiО2 → MgSiО3 (t = 1100-1200 oC).

Оксид кремния также является кислотным оксидом. В результате реакции образуется соль – силикат магния.

14. реакция оксида магния с оксидом фосфора:

3MgO + P2O5 → Mg3(PO4)2;

3MgO + P2O3 → Mg3(PO3)2;

Оксид фосфора также является кислотным оксидом. В результате реакции образуется соль соответственно: ортофосфат магния и фосфит магния.

15. реакция оксида магния с оксидом алюминия:

MgО + Al2O3 → MgAl2О4 (t = 1600 °C).

Оксид алюминия является амфотерным оксидом. Это значит, что как амфотерный оксид оксид алюминия проявляет свойства как кислотных, так и основных соединений. В результате реакции образуется соль – алюминат магния (шпинель).

16. реакция оксида магния с оксидом железа:

MgО + Fe2O3 → MgFe2О4 (to).

В результате реакции образуется соль – феррит магния. Реакция протекает при прокаливании реакционной смеси.

17. реакция оксида магния с оксидом азота:

MgО + 2N2О5 → Mg(NO3)2.

В результате реакции образуются соль – нитрат магния.

18. реакция оксида магния с плавиковой кислотой:

MgO + 2HF → MgF2 + h3O.

В результате химической реакции получается соль – фторид магния и вода.

19. реакция оксида магния с азотной кислотой:

MgO + 2HNO3 → 2Mg(NO3)2 + h3O.

В результате химической реакции получается соль – нитрат магния и вода.

Аналогично проходят реакции оксида магния и с другими кислотами.  

20. реакция оксида магния с бромистым водородом (бромоводородом):

MgO + 2HBr → MgBr2 + h3O.

В результате химической реакции получается соль – бромид магния и вода.

21. реакция оксида магния с йодоводородом:

MgO + 2HI → MgI2 + h3O.

В результате химической реакции получается соль – йодид магния и вода.

22. реакция оксида магния с оксидом кальция и кремнием:

2MgO + CaO + Si → CaSiO3 + 2Mg.

В результате химической реакции получается соль – силикат кальция и магний.

23. реакция оксида магния с хлоридом натрия:

MgO + 2NaCl → MgCl2 + Na2O.

В результате химической реакции получается соль – хлорид магния и оксид натрия.

24. реакция оксида магния с хлоридом железа:

3MgO + 2FeCl3 → 3MgCl2 + Fe2O3.

В результате химической реакции получается соль – хлорид магния и оксид железа.

25. реакция оксида магния с гидроксидом калия:

MgO + 2KOH → Mg(OH)2 + K2O.

В результате химической реакции получается гидроксид магния и оксид калия.

Применение и использование оксида магния:

Оксид магния используется для производства огнеупоров, цементов, очистки нефтепродуктов, как наполнитель при производстве резины, в качестве пищевой добавки E-530.

Примечание: © Фото //www.pexels.com, //pixabay.com

карта сайта

оксид магния реагирует кислота 1 2 3 4 5 вода уравнение реакций соединения масса взаимодействие оксида магния реакции с оксидом магния

comments powered by HyperComments

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

МАГНИЯ ОКСИД - Химия

Оксид магния – неорганическое вещество, имеет химическую формулу MgO.

Краткая характеристика оксида магния

Физические свойства оксида магния

Получение оксида магния

Химические свойства оксида магния

Химические реакции оксида магния

Применение и использование оксида магния

Краткая характеристика оксида магния:

Оксид магния – неорганическое вещество белого цвета.

Так как валентность магния равна двум, то оксид магния содержит один атом кислорода и один атом магния.

Химическая формула оксида магния MgO.

Плохо растворяется в воде, вступает с ней в реакцию.

Легкий, рыхлый порошок, легко впитывает воду.

Наименование параметра:Значение:
Химическая формулаMgO
Синонимы и названия иностранном языкеmagnesium oxide (англ.)магнезия жженая (рус.)магния окись (устар. рус.)
Тип веществанеорганическое
Внешний видбелый порошок
Цветбелый
Вкус—*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м33580
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см33,58
Температура кипения, °C3600
Температура плавления, °C2825
Молярная масса, г/моль40,3044

* Примечание:

— нет данных.

Получение оксида магния:

Оксид магния получают обжигом минералов магнезита и доломита.

Он получается в результате химической реакции – термического разложения карбоната кальция и карбоната магния:

CaMg(CO3)2 → CaО + MgО + СО2 (t = 900-1200 oC);

CaCO3·MgCO3 → CaО + MgО + СО2 (t = 900-1200 oC);

MgCO3 → MgО + СО2 (t > 650 oC);

CaCO3 → CaО + СО2 (t = 900-1200 oC).

CaMg(CO3)2, CaCO3·MgCO3 – химическая формула доломита.

MgCO3 – химическая формула магнезита.

Это промышленный способ получения оксида магния.

Оксид магния относится к основным оксидам.

Химические свойства оксида магния аналогичны свойствам основных оксидов других металлов. Поэтому для него характерны следующие химические реакции:

1. реакция оксида магния с водородом:

MgО + h3 → Mg + h3О.

В результате реакции образуется магний и вода.

2. реакция оксида магния с углеродом:

MgО + С → Mg + СО (t  = 2000 oC).

В результате реакции образуется магний и оксид углерода.

3. реакция оксида магния с серой:

2MgО + 3S → 2MgS + SО2.

В результате реакции образуется сульфид магния и оксид серы.

4. реакция оксида магния с азотом:

2MgО + N2 → 2Mg + 2NО.

В результате реакции образуется магний и оксид азота.

5. реакция оксида магния с кремнием:

2MgО + Si → 2Mg + SiО2.

В результате реакции образуется магний и оксид кремния.

6. реакция оксида магния с калием:

MgО + 2K → Mg + K2О.

В результате реакции образуется магний и оксид калия.

7. реакция оксида магния с кальцием:

MgО + Са → Mg + СаО (t  = 1300 oC).

В результате реакции образуется магний и оксид кальция.

8. реакция оксида магния с алюминием:

3MgО + 2Al → 3Mg + Al2О3.

В результате реакции образуется магний и оксид алюминия.

9. реакция оксида магния с хлором и углеродом:

MgO + Cl2 + С → MgCl2 + СО (t  = 800-1000 oC).

В результате реакции образуется хлорид магния и оксид углерода.

10. реакция оксида магния с водой:

MgО + Н2О → Mg(ОН)2 (t  = 100-125 oC).

Оксид магния реагирует с водой, образуя гидроксид магния.

11. реакция оксида магния с оксидом углерода (углекислым газом):

MgО + СО2 → MgСО3.

Оксид магния реагирует с углекислым газом (являющийся кислотным оксидом), образуя соль – карбонат магния.

12. реакция оксида магния с оксидом серы: 

MgО + SО2 → MgSО3;

MgО + SО3 → MgSО4. 

Оксид серы также является кислотным оксидом. В результате реакции образуется соответственно соль – в первом случае – сульфит магния, во втором случае – сульфат магния.

13. реакция оксида магния с оксидом кремния:

MgО + SiО2 → MgSiО3 (t = 1100-1200 oC).

Оксид кремния также является кислотным оксидом. В результате реакции образуется соль – силикат магния.

14. реакция оксида магния с оксидом фосфора:

3MgO + P2O5 → Mg3(PO4)2;

3MgO + P2O3 → Mg3(PO3)2;

Оксид фосфора также является кислотным оксидом. В результате реакции образуется соль соответственно: ортофосфат магния и фосфит магния.

15. реакция оксида магния с оксидом алюминия:

MgО + Al2O3 → MgAl2О4 (t = 1600 °C).

Оксид алюминия является амфотерным оксидом. Это значит, что как амфотерный оксид оксид алюминия проявляет свойства как кислотных, так и основных соединений. В результате реакции образуется соль – алюминат магния (шпинель).

16. реакция оксида магния с оксидом железа:

MgО + Fe2O3 → MgFe2О4 (to).

В результате реакции образуется соль – феррит магния. Реакция протекает при прокаливании реакционной смеси.

17. реакция оксида магния с оксидом азота:

MgО + 2N2О5 → Mg(NO3)2.

В результате реакции образуются соль – нитрат магния.

18. реакция оксида магния с плавиковой кислотой:

MgO + 2HF → MgF2 + h3O.

В результате химической реакции получается соль – фторид магния и вода.

19. реакция оксида магния с азотной кислотой:

MgO + 2HNO3 → 2Mg(NO3)2 + h3O.

В результате химической реакции получается соль – нитрат магния и вода.

Аналогично проходят реакции оксида магния и с другими кислотами.  

20. реакция оксида магния с бромистым водородом (бромоводородом):

MgO + 2HBr → MgBr2 + h3O.

В результате химической реакции получается соль – бромид магния и вода.

21. реакция оксида магния с йодоводородом:

MgO + 2HI → MgI2 + h3O.

В результате химической реакции получается соль – йодид магния и вода.

22. реакция оксида магния с оксидом кальция и кремнием:

2MgO + CaO + Si → CaSiO3 + 2Mg.

В результате химической реакции получается соль – силикат кальция и магний.

23. реакция оксида магния с хлоридом натрия:

MgO + 2NaCl → MgCl2 + Na2O.

В результате химической реакции получается соль – хлорид магния и оксид натрия.

24. реакция оксида магния с хлоридом железа:

3MgO + 2FeCl3 → 3MgCl2 + Fe2O3.

В результате химической реакции получается соль – хлорид магния и оксид железа.

25. реакция оксида магния с гидроксидом калия:

MgO + 2KOH → Mg(OH)2 + K2O.

В результате химической реакции получается гидроксид магния и оксид калия.

Применение и использование оксида магния:

Оксид магния используется для производства огнеупоров, цементов, очистки нефтепродуктов, как наполнитель при производстве резины, в качестве пищевой добавки E-530.

Примечание: © Фото //www.pexels.com, //pixabay.com

карта сайта

оксид магния реагирует кислота 1 2 3 4 5 водауравнение реакций соединения масса взаимодействие оксида магнияреакции с оксидом магния

by HyperComments

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/oksid-magniya-svoystva-poluchenie-himicheskie-reaktsii/

Оксид магния (Е530)

Магния оксид – вещество, используемое в спорте, медицине и пищевой промышленности. Атлеты и скалолазы обрабатывают им руки, чтобы предотвратить скольжение. Доктора и косметологи ценят оксид магния за противовоспалительное и антибактерицидное действие. Присутствует он и в некоторых наших продуктах в качестве пищевой добавки Е530. Не опасно ли это?

Описание вещества

Официально принятое название добавки – Magnesium Oxide (оксид магния), также известен под индексом европейской кодификации Е530. Химическая формула – MgO.

Помимо этого в составе различных товаров определить это вещество можно под именем: жженая магнезия или окись магния. Получают его в лабораторных условиях путем обжига доломита и магнезита, которые содержат и оксид магния.

Также он встречается в естественных условиях в минерале периклаз – прозрачных кристаллов с серовато-зеленым оттенком.

Бывает две формы этого вещества: тяжелая и легкая окись магния. Тяжелая похожа на грубый порошок с крупными кристаллами, ее применяют в строительстве, спорте, тяжелой промышленности.

Легкая окись магния используется в качестве эмульгатора и стабилизатора в производстве продуктов питания, а также в медицине, представляет собой рыхлый белый порошок без запаха со слабо землистым вкусом.

Цвет этого вещества считается «эталонным» белым, такое свойство обусловлено абсолютной отражательной способностью.

Кристаллы жженной магнезии не растворяются в воде и спирте, хорошо поглощают жиры и другие жидкости. Относится к пожаробезопасным, плавится при температуре от 28000 С, а закипает при 36000 С.

Благодаря этим свойствам жженую магнезию используют в качестве огнеупорного материала в нефтеперерабатывающей промышленности и других отраслях.

Образует соли при соединении с кислотами, поэтому в химической промышленности тоже широко применяется.

Применение MgO в промышленности

Благодаря высокой температуре плавления, магний оксид используется в строительстве. В этом случае высоко ценится так называемый «каустический магнезит», который получают путем обжига природного магнезита.

Особенно широкое применение он получил при создании строительных материалов таких, как ксилит, цемент, бетон.

Химическое вещество повышает их огнеупорность, поэтому такие материалы часто применяют при строительстве производственных помещений, жилых и общественных.

Также вещество MgO используют для создания вяжущих веществ. Однако его свойство впитывать влагу позволяет применять такие материалы и смеси только для строительства помещений с преимущественно сухим режимом эксплуатации. В автомобильной промышленности это химическое соединение вводят в резиновые смеси, а также для вулканизации в качестве активатора других ускорителей.

Легкая окись магния обладает абразивными свойствами, поэтому ее часто используют в электронной промышленности для очистки «чувствительных» поверхностей. Помимо этого жженая магнезия нашла свое применение в таких случаях:

  • входит в состав защитного слоя в жидкокристаллических экранах;
  • применяется в производстве бумаги;
  • включается в состав нагревательных элементов в системах отопления;
  • некоторые виды нефтепродуктов очищаются с помощью этого химического соединения.

Еще одно важное свойство соединения MgO состоит в том, что с его помощью можно контролировать процесс растворяемости радионуклидов. Это качество очень полезно на заводах, перерабатывающих отходы, применение жженной магнезии в этом случае для сохранения экологического равновесия.

Перспективным сегментом потребления оксида магния сегодня считается сельское хозяйство. Здесь с его помощью предотвращают слеживание удобрений и применяют как самостоятельную добавку для обогащения почвы магнием.

Недостаток магния на сельхозугодьях отражается на производимой продукции, поэтому применение такого удобрения очень важно для урожая.

Правда чаще всего еще используют сульфат магния, так как последний немного дешевле жженной магнезии.

Также свое применение это вещество нашло в животноводстве. Дефицит магния сказывается на здоровье скота и продуктах, получаемых от них.

Обычно питание животных на фермах содержит достаточно всех необходимых минералов и витаминов. Но на пастбищах, удобренных калием и азотом иногда бывает недостаток Mg.

Жженую магнезию применяют для профилактики и устранения магниевого дефицита, вводя подкормки.

Косметические товары с оксидом магния

В косметической отрасли магния оксид используют в качестве стабилизатора, буферного вещества, абсорбента. Но главным свойством, которое ценят косметологи и дерматологи это его текстура.

Рыхлость, легкость и рассыпчатость позволяет успешно применять жженую магнезию в производстве пудр, тальков, румян и т.д.

Присутствие этого компонента в рецептуре косметического продукта позволяет избежать образования комков даже при условии долгого периода эксплуатации.

Оксид магния встречается в таких продуктах:

  • декоративная косметика;
  • солнцезащитные средства для тела;
  • маски для волос и лица;
  • лосьоны против черных точек;
  • детские тальки;
  • дезодоранты и антиперспиранты;
  • шампуни.

Если в составе продукта значится Е530 или Magnesium Oxide, это нисколько не умаляет качество самого товара. При наружном применении эта добавка считается абсолютно безопасной, обладает противовоспалительным и абсорбирующим эффектом на коже.

Более того в сочетании с другими химическими элементами его возможности значительно возрастают. Чаще всего жженую магнезию сочетают с цинком, что решает очень распространенную проблему – сужает поры.

Также полезные свойства оксида магния включают в себя отбеливание кожи и себорегуляцию (подсушивание жирной кожи).

Оксид магния как пищевая добавка

В продуктах питания этот компонент обычно встречается под индексом Е530. В качестве пищевой добавки MgO разрешен законом в странах ЕС, Украине и России (относительно других стран данные не представляются). По степени влияния на организм это вещество относят к безопасным. В пищевой промышленности оксид магния ценят главным образом как эмульгатор и стабилизатор.

Чаще всего Е530 встречается в таких продуктах:

В пищевые продукты компонент Е530 добавляется для предотвращения комкования и слеживания. В производстве кулинарных жиров и масел эта добавка ускоряет гидрогенизацию. Ее наличие в составе продуктов не говорит о их плохом качестве, так как компонент признан безопасным.

Влияние Е530 на организм: польза и вред

Основным потребителем оксида магния остается фармацевтика. Это химическое соединение добавляют в лекарства, используют при самостоятельном или комплексном лечении. В медицине ценятся такие фармакологические свойства Е530: антацидное, противоязвенное, противовоспалительное. Также окись магния улучшает мускулатуру кишечника.

Попадая в пищеварительный тракт, жженая магнезия вступает в реакцию с водой и образует гидроксид. Это вещество снижает действие пищеварительных ферментов, в частности нейтрализует соляную кислоту.

Благодаря этому добавка Е530 применяется при повышенной кислотности, против изжоги, для лечения и профилактики язвы.

Также в желудке это вещество образует магния хлорид – соединение, которое улучшает перистальтику кишечника и обеспечивает слабительный эффект.

Препараты с мagnesium оxide применяют для профилактики появления оксидных камней. Для этого вещество комбинируют с пиридоксином.

Добавка не вызывает повышения щелочности крови и тканей организма, также не способна проникнуть через стенки ЖКТ в кровоток. Любое влияние на организм возможно только при установленной врачом дозировке.

То есть то количество Е530, которое есть в продуктах питания на организм не влияет.

Окись магния помогает при таких болезнях:

  • острый и хронический гастрит;
  • обострение язвы 12-перстной кишки и желудка;
  • диспепсия;
  • панкреатит;
  • при отравлении кислотами для нейтрализации их действия;
  • для устранения запоров.

Также эта добавка эффективна для профилактики дефицита магния или пополнения запасов этого минерала. Этот компонент обеспечивает нормальную работу нервной системы, укрепляет структуру костей и сердечную мышцу. В этих целях прописывают витаминные комплексы, в состав которых входит MgO: Витрум, Компливит Актив, Мультимакс, Мульти-табс, Олиговит и др.

Принимать лекарства и витамины с оксидом магния для самолечения небезопасно, так как помимо полезных качеств наблюдаются побочные эффекты и противопоказания.

В первую очередь препараты с MgO не прописывают людям с индивидуальной чувствительностью к данному веществу. Также применять их опасно при гипермагниемии – повышенной концентрации магния в сыворотке крови. Переизбыток Mg в организме угнетает деятельность нервной и сердечно-сосудистой системы.

Особенно осторожно такие препараты нужно использовать людям с болезнями почек, так как нарушение их деятельности приводит к той самой гипермагниемии. По предписанию доктора лекарства с содержанием оксида магния часто сочетают с антацидами алюминия, которые снижают риск побочных эффектов со стороны ЖКТ и продлевают полезное действие препаратов.

Случаи передозировки жженой магнезией отсутствуют, как и отзывы от потребителей. Ее используют для взрослых, некоторые лекарственные формы применяются в детской педиатрии, в период кормления грудью и беременности, что говорит о его относительной безопасности и пользе для организма.

Вред Е530 может нанести только в случае неправильного самолечения, превышенном употреблении вещества или совмещении с азитромицином (такая комбинация не рекомендуется).

Передозировка препаратом случается крайне редко, только в случаях нарушенной деятельности пищеварения или работы других систем.

В здоровом организме из полученной жженной магнезии усваивается нужное количество магния, а остальное утилизируется без последствий для здоровья.

В заключение: где купить оксид магния

Окись магния используется во многих отраслях: строительстве, спорте, пищевой промышленности, сельском хозяйстве. Вещество не несет вреда для человеческого организма при правильном использовании или употреблении продуктов с ним. Купить оксид магния можно оптом по интернету или в точках сбыта с заводов.

В розницу это вещество продают в аптеках в виде саше с порошком, в таблетках, в составе витаминно-минерального комплекса. Цена за такие препараты зависят от производителя и узнаваемости бренда, средняя цена за упаковку таблеток (60 штук) составляет от 10 долларов.

Принимать препарат внутрь без консультации врача не рекомендуется.

Источник: https://FoodandHealth.ru/dobavki/oksid-magniya-e530/

Оксид магния

19.06.2014

Оксид магния представляет собой порошок, состоящий из мельчайших бесцветных кристаллов, имеет химическую формулу MgO и широко известен под названием жженой магнезии и окиси магния. Минерал, являющийся оксидом магния, можно встретить в природе.

Он называется периклаз и имеет вид бесцветных кристаллов, которые, однако, иногда бывают бледно-желтого или бледно-зеленого оттенка.

Значительных месторождений периклаза не обнаружено, поэтому для промышленных нужд оксид магния получают путем обжига доломита или магнезита.

В зависимости от температуры проведения реакции в результате образуется либо легкая магнезия, состоящая из мелких кристаллов, либо тяжелая магнезия, кристаллы которой заметно крупнее. Поскольку тяжелая магнезия используется, в основном, в металлургической промышленности, то такой вид оксида магния часто называют металлургическим порошком.

Свойства оксида магния

Жженая магнезия характеризуется следующими свойствами, благодаря которым она нашла широкое применение в разных отраслях:

  • оксид магния не растворяется в воде;
  • обладает высокой гигроскопичностью, то есть порошок способен хорошо впитывать воду, не растворяясь в ней;
  • окись магния способна вступать в реакцию с растворами кислот, образуя соли;
  • магнезия не растворяется в спирте;
  • вещество пожаро- и взрывобезопасно, имеет чрезвычайно высокую температуру плавления и кипения – 2825оС и 3600оС соответственно;
  • порошок жженой магнезии является абсолютным отражателем (с равным единице коэффициентом отражения).

Частицы оксида магния обладают высокой дисперсностью, поэтому пыль этого вещества способна долго находиться в воздухе. Предельно допустимое количество пыли жженой магнезии в воздухе – 6 мг/м3.

При более значительном содержании частиц оксида магния в воздухе, он способен вызывать раздражение глаз и органов дыхания, чувство жжения в горле, кашель и аллергические реакции.

Окиси магния, по степени воздействия на человеческий организм, присвоен III класс опасности.

Где применяется оксид магния

Благодаря своим свойствам оксид магния нашел широкое применение в пищевой и фармацевтической промышленности, а также в машиностроении, резинотехнической, нефтеперерабатывающей, электронной сферах. Широко применяется оксид магния при изготовлении огнеупорных материалов и при производстве определенных марок цемента.

В пищевой промышленности окиси магния присвоено обозначение Е530. Используется это вещество как пищевая добавка, препятствующая слеживанию и комкованию сыпучих продуктов, а также как эмульгатор для различных пищевых масел. Наиболее часто оксид магния применяют при производстве сухого молока и сливок, какао, шоколада, сыпучих пищевых концентратов, спредов и маргаринов.

В фармацевтической промышленности оксид магния используют для производства препаратов, применяющихся для устранения или профилактики дефицита магния в организме.

Кроме того, вещество обладает антацидными свойствами, благодаря чему его нередко включают в состав препаратов для устранения изжоги, для понижения кислотности.

Также оксид магния обладает противоязвенным и противовоспалительным свойством, усиливает перистальтику кишечника.

Магний является одним из основных минералов, необходимых для нормальной работы сердца, нервной системы, мышц, от него во многом зависит прочность костей и нормальная жизнедеятельность клеток. При сбалансированном питании человек, как правило, получает достаточное количество магния с пищей.

Если же рацион беден свежими овощами, зеленью, фруктами, имеют место вредные привычки, то со временем может развиться дефицит этого вещества. Если проблема не устраняется в течение длительного времени, в конечном итоге может привести к нарушению работы всех систем организма.

В этом случае оксид магния назначается врачом, как препарат для приема внутрь. Следует принимать его в одно и то же время в процессе приема пищи. Принимаемый натощак препарат способен вызвать диспепсию или диарею.

Дозировку устанавливает врач, в зависимости от состояния больного и его реакции на лекарственное средство.

Избыток магния не менее опасен, чем его дефицит. В этом случае могут возникнуть аллергические реакции, кашель, жжение в горле, носу и глазах, металлический привкус, сыпь на коже.

При приеме других препаратов оксид магния способен усиливать или нейтрализовать их действие, поэтому применять лекарства, содержащие это вещество, без назначения врача категорически не рекомендуется. В частности, оксид магния способен полностью нейтрализовать действие некоторых лекарственных средств для лечения щитовидной железы, антибиотиков, тетрациклинов, бисфосфонатов.

Применяется оксид магния и как промышленный материал при производстве бумаги, как один из основных компонентов стройматериалов с огнеупорными свойствами и изоляторов. Нередко жженая магнезия используется и для изготовления нагревательных конструкций в различных системах отопления.

Жженая магнезия включается в состав защитного покрытия для плазменных экранов. В электронной промышленности ее используют как мягкий абразив. Нашел свое применение оксид магния и в нефтепереработке: его используют для очистки некоторых видов нефтепродуктов. Современное производство синтетического каучука и резинотехнических изделий тоже требует применения магнезии.

В целях сохранения экологического равновесия окись магния применяют на перерабатывающих отходы предприятиях в качестве вещества, позволяющего контролировать уровень растворимости радионуклидов.

Тот порошок, который используется гимнастами для присыпания ладоней при выполнении упражнений на спортивных снарядах, тоже является ни чем иным как жженой магнезией. Оксид магния предотвращает скольжение ладоней и снижает риск срыва со снаряда.

Источник: https://selderey.net/pravilnoe-pitanie/oksid-magnija.html

Поделиться:

Нет комментариев

himya.ru

Вопрос№58. Магний. Оксид и гидроксид магния. Применение солей магния в ветеринарии. Ион магния как биогенный элемент.

Ма́гний — элемент главной подгруппы второй группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 12. Обозначается символом Mg. Простое вещество магний — лёгкий, ковкий металл серебристо-белого цвета.

Окси́д ма́гния (жжёная магнезия, периклаз) — химическое соединение с формулой MgO, бесцветные кристаллы, нерастворимые в воде, пожаро- и взрывобезопасен. Основная форма — минерал периклаз.

Физические свойства

Легкий, рыхлый порошок белого цвета, легко впитывает воду.на этом свойстве основано его применение в спортивной гимнастике.нанесенный на ладони спортсмена порошок предохраняет его от опасности сорваться с гимнастического снаряда. Температура плавления — 2825 °C.температура кипения — 3600 °C.Плотность=3,58 г/см3.

Химические свойства

Легко реагирует с разбавленными кислотами и водой с образованием солей и Mg(OH)2:

MgO + 2HCl(разб.) → MgCl2 + h3O;

MgO + h3O → Mg(OH)2.

Получение

Получают обжигом минералов магнезита и доломита.

2Mg + O2 = 2MgO.

Гидрокси́д ма́гния — неорганический гидроксид щелочноземельного металла магния. Относится к классу нерастворимых оснований.

При стандартных условиях гидроксид магния представляет собой бесцветные кристаллы с гексагональной решёткой. При температуре выше 350 °C разлагается на оксид магния и воду. Поглощает углекислый газ и воду из воздуха с образованием основного карбоната магния. Гидроксид магния практически нерастворим в воде. Является слабым основанием. Встречается в природе в виде минерала брусита.

Получение

  • Взаимодействие растворимых солей магния с щелочами:

  • Взаимодействие металлического магния с парами воды:

Химические свойства

  • Разложение при нагревании до 350°C:

  • Взаимодействие с кислотами с образованием соли и воды (реакция нейтрализации):

  • Взаимодействие с кислотными оксидами с образованием соли и воды:

Вопрос№59. Хром. Общая характеристика. Амфотерность гидроксида. Токсичность соединений хрома. Биологическое значение хрома.

Общая характеристика

Хром относится к побочной подгруппе VI группы Периодической системы. В природе существует в виде смеси 4-х стабильных изотопов, из которых наиболее распространен 52Cr (мольная доля 83,76%). В земной коре массовая доля хрома 8,310-3%, по распространенности хром на 22-м месте. В природе встресается только в виде соединений, наиболее распространенный минерал хрома - хромит FeOCr2O3. Элемент хром открыт в 1797 г французским химиком Вокленом.

Внешний электронный уровень хрома имеет строение 3s23p63d54s1, характерные степени окисления – от +1 до +6, наиболее устойчивы +2,+3,+6.

Соединения хрома (III)

Степень окисления +3 для хрома самая устойчивая, в этой степени окисления соединения хрома имеют сходство с соединениями алюминия из-зa близости ионных радиусов: 0,064 нм для хрома +3 и 0,057 нм для алюминия +3. Для оксида и гидроксида хрома (III) характерна амфотерность, например, легко осаждаемый аммиаком из растворов солей хрома (III) гидроксид серо-зеленого цвета:

CrCl3 + 3Nh4 + 3h3O = Cr(OH)3 + 3Nh5Cl

Который растворяется как в избытке кислоты:

Cr(OH)3 + HCl = CrCl3 + 3h3O

Так и в избытке щелочи

Cr(OH)3 + 3NaOH = Na3[Cr(OH)6]

Биологическое значение хрома

Хром относится к числу элементов, жизненно необходимых человеку и животным. Естественным источником хрома для человека являются растения.

В организме человека содержится около 6 мг хрома. В тканях органов содержание хрома в десятки раз выше, чем в крови. Наибольшее количество хрома присутствует в печени (0,2 мкг/кг) и почках (0,6 мкг/кг), кишечнике, щитовидной железе, хрящевой и костной ткани, в легких (в случае поступления соединений хрома с воздухом). В легких оседает до 70% поступившего хрома. С возрастом наблюдается снижение хрома количества в организме.

Хром – незаменимый нутриент, который оказывает потенциальное действие на инсулин и, таким образом, влияет на метаболизм углеводов, липидов и белка. До сих пор не идентифицирован химический характер взаимосвязи между хромом и функцией инсулина. Биологически активная форма хрома, иногда называемого фактором толерантности глюкозы, может быть комплексом хрома, никотиновой кислоты и, возможно, аминокислот глицина, цистеина и глютаминовой кислоты. Предполагается, что хром обладает биохимической функцией, которая оказывает влияние на способность рецептора инсулина к взаимодействию с гормоном. Это играет большую роль у лиц пожилого возраста и больных сахарным диабетом.

Хром в организме присутствует в виде двух форм: трехвалентного и шестивалентного. Трехвалентный хром играет очень важную физиологическую роль - участвует в регуляции обмена жиров и углеводов, снижает уровень холестерина в крови. Шестивалентный катион гораздо токсичнее трехвалентного. Соединения Cr 6+ , наряду с общетоксикологическим действием, способны вызывать мутагенный и канцерогенный эффекты.

Основные функции хрома в организме:

  • Хром входит в состав низкомолекулярного органического комплекса - фактора толерантности к глюкозе, обеспечивающего поддержание нормального уровня глюкозы в крови.

  • Хром вместе с инсулином действует как регулятор уровня сахара в крови, обеспечивает нормальную активность инсулина.

  • Хром способствует структурной целостности молекул нуклеиновых кислот.

  • Хром участвует в регуляции работы сердечной мышцы и функционировании кровеносных сосудов.

  • Хром способствует выведению из организма токсинов, солей тяжелых металлов, радионуклидов.

studfiles.net

Магний оксид: свойства, получение, применение

Магний оксид нередко называют еще жженой магнезией или просто окисью магния. Это вещество представляет легкий и мелкий кристаллический белый порошок. В природе магний оксид встречается в виде минерала периклаза. В пищевой промышленности это вещество известно как пищевая добавка под кодом E530.

Свойства оксида магния

Химическая формула данного вещества: MgO. Это соединение практически не имеет запаха, в аммиаке и кислоте растворяется хорошо, в воде его растворимость при 30 °С составляет всего лишь 0,0086 грамм/100 мл, а в спирте оно и вовсе не растворяется. Молярная масса MgO - 40,3044 г/моль. При 20 °C его плотность равна 3,58 г/см³, температура кипения - 3600 °C, плавления - 2852 °C. Мелкокристаллический магний оксид химически довольно активен. Он способен поглощать углекислый газ с образованием соответствующего карбоната:

хоть и медленно, но все же реагирует с водой, образуя при этом нерастворимое слабое основание:

вступает в реакцию с кислотами:

Прокаленный магний оксид свою химическую активность теряет. Также следует добавить, что этот порошок гигроскопечен.

Получение оксида магния

В промышленности данное соединение в основном получают посредством обжига. В качестве сырья используют такие минералы как доломит (MgCO3.CaCO3) или магнезит (MgCO3). Кроме того, жженую магнезию производят при помощи прокаливания бишофита (MgCl2 х 6h3O) в водяном паре, прокаливания Mg(OH)2 и прочих неустойчивых к температуре соединений Mg. В лабораторных условиях MgO можно получить при взаимодействии ее составных компонентов:

либо посредством термического разложения некоторых солей или гидроксида:

В зависимости от способа получения окиси магния принято выделять два основных вида этого соединения: легкая и тяжелая магнезия. Первый представляет собой бесцветный порошок, который достаточно легко вступает в различные реакции с разбавленными кислотами, в результате чего образуются соли Mg. Второй состоит из больших кристаллов природного или искусственного периклаза и отличается водостойкостью и более инертен.

Применение оксида магния

В промышленности это соединение используют для изготовления цементов, огнеупоров, в качестве наполнителя при производстве резины и для очистки нефтепродуктов. Сверхлегкий магний оксид применяют в качестве очень мелкого абразива, которым очищают поверхность. В частности, это используется в электронной промышленности. Кроме того, жженая магнезия широко применяется в медицине. Здесь MgO используют при нарушении уровня кислотности желудочного сока, возникающего из-за избытка соляной кислоты. Окись магния также принимают для нейтрализации активных веществ, случайно попавших в желудок. В пищевой промышленности MgO применяется в качестве пищевой добавки (код E530), которая препятствует комкованию и слеживанию. Жженая магнезия используется также и в спортивной гимнастике. Здесь этот порошок спортсмены наносят на руки для того чтобы контакт с гимнастическим снарядом был более надежным. Добавим еще, что оксид магния является абсолютным отражателем. Коэффициент отражения данного вещества в расширенной спектральной полосе равен единице и поэтому его вполне можно использовать в качестве эталона белого цвета.

fb.ru

Оксид магния (Е530)

Магния оксид – вещество, используемое в спорте, медицине и пищевой промышленности. Атлеты и скалолазы обрабатывают им руки, чтобы предотвратить скольжение. Доктора и косметологи ценят оксид магния за противовоспалительное и антибактерицидное действие. Присутствует он и в некоторых наших продуктах в качестве пищевой добавки Е530. Не опасно ли это?

Описание вещества

Официально принятое название добавки – Magnesium Oxide (оксид магния), также известен под индексом европейской кодификации Е530. Химическая формула – MgO. Помимо этого в составе различных товаров определить это вещество можно под именем: жженая магнезия или окись магния. Получают его в лабораторных условиях путем обжига доломита и магнезита, которые содержат и оксид магния. Также он встречается в естественных условиях в минерале периклаз – прозрачных кристаллов с серовато-зеленым оттенком.

Бывает две формы этого вещества: тяжелая и легкая окись магния. Тяжелая похожа на грубый порошок с крупными кристаллами, ее применяют в строительстве, спорте, тяжелой промышленности. Легкая окись магния используется в качестве эмульгатора и стабилизатора в производстве продуктов питания, а также в медицине, представляет собой рыхлый белый порошок без запаха со слабо землистым вкусом. Цвет этого вещества считается «эталонным» белым, такое свойство обусловлено абсолютной отражательной способностью.

Кристаллы жженной магнезии не растворяются в воде и спирте, хорошо поглощают жиры и другие жидкости. Относится к пожаробезопасным, плавится при температуре от 28000 С, а закипает при 36000 С. Благодаря этим свойствам жженую магнезию используют в качестве огнеупорного материала в нефтеперерабатывающей промышленности и других отраслях. Образует соли при соединении с кислотами, поэтому в химической промышленности тоже широко применяется.

Применение MgO в промышленности

Благодаря высокой температуре плавления, магний оксид используется в строительстве. В этом случае высоко ценится так называемый «каустический магнезит», который получают путем обжига природного магнезита. Особенно широкое применение он получил при создании строительных материалов таких, как ксилит, цемент, бетон. Химическое вещество повышает их огнеупорность, поэтому такие материалы часто применяют при строительстве производственных помещений, жилых и общественных.

Также вещество MgO используют для создания вяжущих веществ. Однако его свойство впитывать влагу позволяет применять такие материалы и смеси только для строительства помещений с преимущественно сухим режимом эксплуатации. В автомобильной промышленности это химическое соединение вводят в резиновые смеси, а также для вулканизации в качестве активатора других ускорителей.

Легкая окись магния обладает абразивными свойствами, поэтому ее часто используют в электронной промышленности для очистки «чувствительных» поверхностей. Помимо этого жженая магнезия нашла свое применение в таких случаях:

  • входит в состав защитного слоя в жидкокристаллических экранах;
  • применяется в производстве бумаги;
  • включается в состав нагревательных элементов в системах отопления;
  • некоторые виды нефтепродуктов очищаются с помощью этого химического соединения.

Еще одно важное свойство соединения MgO состоит в том, что с его помощью можно контролировать процесс растворяемости радионуклидов. Это качество очень полезно на заводах, перерабатывающих отходы, применение жженной магнезии в этом случае для сохранения экологического равновесия.

Перспективным сегментом потребления оксида магния сегодня считается сельское хозяйство. Здесь с его помощью предотвращают слеживание удобрений и применяют как самостоятельную добавку для обогащения почвы магнием. Недостаток магния на сельхозугодьях отражается на производимой продукции, поэтому применение такого удобрения очень важно для урожая. Правда чаще всего еще используют сульфат магния, так как последний немного дешевле жженной магнезии.

Также свое применение это вещество нашло в животноводстве. Дефицит магния сказывается на здоровье скота и продуктах, получаемых от них. Обычно питание животных на фермах содержит достаточно всех необходимых минералов и витаминов. Но на пастбищах, удобренных калием и азотом иногда бывает недостаток Mg. Жженую магнезию применяют для профилактики и устранения магниевого дефицита, вводя подкормки.

Косметические товары с оксидом магния

В косметической отрасли магния оксид используют в качестве стабилизатора, буферного вещества, абсорбента. Но главным свойством, которое ценят косметологи и дерматологи это его текстура. Рыхлость, легкость и рассыпчатость позволяет успешно применять жженую магнезию в производстве пудр, тальков, румян и т.д. Присутствие этого компонента в рецептуре косметического продукта позволяет избежать образования комков даже при условии долгого периода эксплуатации.

Оксид магния встречается в таких продуктах:

  • декоративная косметика;
  • солнцезащитные средства для тела;
  • маски для волос и лица;
  • лосьоны против черных точек;
  • детские тальки;
  • дезодоранты и антиперспиранты;
  • шампуни.

Если в составе продукта значится Е530 или Magnesium Oxide, это нисколько не умаляет качество самого товара. При наружном применении эта добавка считается абсолютно безопасной, обладает противовоспалительным и абсорбирующим эффектом на коже. Более того в сочетании с другими химическими элементами его возможности значительно возрастают. Чаще всего жженую магнезию сочетают с цинком, что решает очень распространенную проблему – сужает поры. Также полезные свойства оксида магния включают в себя отбеливание кожи и себорегуляцию (подсушивание жирной кожи).

Оксид магния как пищевая добавка

В продуктах питания этот компонент обычно встречается под индексом Е530. В качестве пищевой добавки MgO разрешен законом в странах ЕС, Украине и России (относительно других стран данные не представляются). По степени влияния на организм это вещество относят к безопасным. В пищевой промышленности оксид магния ценят главным образом как эмульгатор и стабилизатор.

Чаще всего Е530 встречается в таких продуктах:

В пищевые продукты компонент Е530 добавляется для предотвращения комкования и слеживания. В производстве кулинарных жиров и масел эта добавка ускоряет гидрогенизацию. Ее наличие в составе продуктов не говорит о их плохом качестве, так как компонент признан безопасным.

Влияние Е530 на организм: польза и вред

Основным потребителем оксида магния остается фармацевтика. Это химическое соединение добавляют в лекарства, используют при самостоятельном или комплексном лечении. В медицине ценятся такие фармакологические свойства Е530: антацидное, противоязвенное, противовоспалительное. Также окись магния улучшает мускулатуру кишечника.

Попадая в пищеварительный тракт, жженая магнезия вступает в реакцию с водой и образует гидроксид. Это вещество снижает действие пищеварительных ферментов, в частности нейтрализует соляную кислоту. Благодаря этому добавка Е530 применяется при повышенной кислотности, против изжоги, для лечения и профилактики язвы. Также в желудке это вещество образует магния хлорид – соединение, которое улучшает перистальтику кишечника и обеспечивает слабительный эффект.

Препараты с мagnesium оxide применяют для профилактики появления оксидных камней. Для этого вещество комбинируют с пиридоксином. Добавка не вызывает повышения щелочности крови и тканей организма, также не способна проникнуть через стенки ЖКТ в кровоток. Любое влияние на организм возможно только при установленной врачом дозировке. То есть то количество Е530, которое есть в продуктах питания на организм не влияет.

Окись магния помогает при таких болезнях:

  • острый и хронический гастрит;
  • обострение язвы 12-перстной кишки и желудка;
  • диспепсия;
  • панкреатит;
  • при отравлении кислотами для нейтрализации их действия;
  • для устранения запоров.

Также эта добавка эффективна для профилактики дефицита магния или пополнения запасов этого минерала. Этот компонент обеспечивает нормальную работу нервной системы, укрепляет структуру костей и сердечную мышцу. В этих целях прописывают витаминные комплексы, в состав которых входит MgO: Витрум, Компливит Актив, Мультимакс, Мульти-табс, Олиговит и др.

Принимать лекарства и витамины с оксидом магния для самолечения небезопасно, так как помимо полезных качеств наблюдаются побочные эффекты и противопоказания.

В первую очередь препараты с MgO не прописывают людям с индивидуальной чувствительностью к данному веществу. Также применять их опасно при гипермагниемии – повышенной концентрации магния в сыворотке крови. Переизбыток Mg в организме угнетает деятельность нервной и сердечно-сосудистой системы.

Особенно осторожно такие препараты нужно использовать людям с болезнями почек, так как нарушение их деятельности приводит к той самой гипермагниемии. По предписанию доктора лекарства с содержанием оксида магния часто сочетают с антацидами алюминия, которые снижают риск побочных эффектов со стороны ЖКТ и продлевают полезное действие препаратов.

Случаи передозировки жженой магнезией отсутствуют, как и отзывы от потребителей. Ее используют для взрослых, некоторые лекарственные формы применяются в детской педиатрии, в период кормления грудью и беременности, что говорит о его относительной безопасности и пользе для организма.

Вред Е530 может нанести только в случае неправильного самолечения, превышенном употреблении вещества или совмещении с азитромицином (такая комбинация не рекомендуется). Передозировка препаратом случается крайне редко, только в случаях нарушенной деятельности пищеварения или работы других систем. В здоровом организме из полученной жженной магнезии усваивается нужное количество магния, а остальное утилизируется без последствий для здоровья.

В заключение: где купить оксид магния

Окись магния используется во многих отраслях: строительстве, спорте, пищевой промышленности, сельском хозяйстве. Вещество не несет вреда для человеческого организма при правильном использовании или употреблении продуктов с ним. Купить оксид магния можно оптом по интернету или в точках сбыта с заводов. В розницу это вещество продают в аптеках в виде саше с порошком, в таблетках, в составе витаминно-минерального комплекса. Цена за такие препараты зависят от производителя и узнаваемости бренда, средняя цена за упаковку таблеток (60 штук) составляет от 10 долларов. Принимать препарат внутрь без консультации врача не рекомендуется.

foodandhealth.ru


Смотрите также